免费咨询热线
13621929115量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,连续2年被腾讯云+社区评选为“年度最佳作者”。
今天,公众号为大家带来三篇精选论文。希望大家有所收获!论文一
展厅模型传统动态因子模型(DFM)在宏观计量领域里应用度极高,因为它能够最大程度的从高维数据中提取出共同因子来分析很多变量间的关系但DFM的局限是对于非线性信息的处理,本文结合深度学习算法提出了一个新颖的深度神经网络框架——我们称之为深度动态因子模式来编码可用的信息,从数百个宏观经济和金融时间序列到少数几个未观察展厅模型到的潜在状态。
虽然在逻辑上类似于传统的动态因素模型(DFMs),但与那些不同的是,这类新的模型允许因素和观测之间的非线性信息(主要使用AutoEncoder提取隐含因子)然而,通过设计,模型的潜在状态仍然可以解释为标准因子模型。
在对美国经济状况预测和预测的实证应用中,我们展示了该框架在处理高维、混合展厅模型频率和异步发布的时间序列数据方面的潜力。在使用美国数据进行的完全实时样本外测试中,DFM的性能优于最先进的DFM。论文二
在公众号之前的文章中介绍过如果直接用组合的Sharpe作为损失函数,进行模型训练本文也是类似的思路,本文采用深度学习模型直接优化投资组合夏普比率本文提出的框架避开了预测预期收益的要展厅模型求,并允许我们通过更新模型参数直接优化投资组合的权重。
我们不是选择单独的资产,而是交易市场指数的ETF,以形成一个投资组合不同资产类别的指数显示出强劲的相关性,对它们进行交易大大减少了可供选择的资产种类我们将我们的方法与一系列算法进行了比较,结果表明,我们的模型在2011年至2020年4月底的测试期展厅模型间(包括2020年第一季度的金融不稳定性)获得了最好的性能。
通过敏感性分析,本文还研究了各特征的相关性,并通过波动率缩放进一步研究了该方法在不同成本率和不同风险水平下的表现论文三
近年来,随着图神经网络算法及知识图谱类数据的发展,越来越多的机构尝试GNN在投资组合管理中的应用Amundi刚刚发表的工作展厅模型论文从基础的图论知识、GNN算法到GNN在组合构建的实证分析都有系统的讲解是一篇快速熟悉GNN与量化投资的好文章。
在金融投资中,不可能孤立地分析一项资产,而要考虑多像资产的关联关系传统的做法,大家会使用copula或向量自回归模型,它允许建立资产之间的依赖关系在本文中,作者将研究基于图的方法来建模资展厅模型产的关联关系图在表示关系时是无处不在的,无论是建模社会网络交互、疾病传播、交通还是供应链信息。
它可以非常直观地表示市场的相互联系我们将展示几种类型的市场信息如何转化为图表,并展示一些用于市场分析的基于图表的工具此外,神经卷积层已经发展,允许更有表现力的神经模型我们展示了三个图神经层在股票收益预测问题展厅模型上的作用。
利用这些预测,我们构建了投资组合,并表明图层可以作为LSTM等经典方法的稳定器,降低交易成本并过滤掉高频信号我们还研究了不同的基于图表的信息对预测的影响,并观察到在2021年,供应链信息变得比基于行业或相关图表的信息更加丰富。
Copyright © 2002-2020 上海润之模型设计有限公司 版权所有 展示模型,展品模型,展厅模型,展示道具,展厅展品,展品道具,模型定制,模型公司,上海模型公司 备案号:沪ICP备20018260号